Roll No. Total	Total N
--------------------------------------	---------

fotal No. of Pages : 02

Total No. of Questions : 07

B.Sc. (IT) (Sem.–4th) COMPUTER ORIENTED NUMERICAL METHODS Subject Code : BS-208 Paper ID : [B0416]

Time : 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

- l. Write briefly :
 - (a) What are truncation errors in interpolation method ?
 - (b) Define Simpson's $\frac{1}{3}$ rd rule.
 - (c) Why Gauss Jordon method requires double the elementary row operations than Gauss Elimination method ?
 - (d) What method do you think is the best for getting solution of equations in the category of iterative methods ?
 - (e) What do you mean by 'Linear Regression' ?
 - (f) Write some pit falls in computing.
 - (g) Give formula of Trapezodial Rule.
 - (h) Give formula of Newton-Raphson method.
 - (i) What is Binary Representation of Numbers ?
 - (j) Give comparison of Runge-Kutta and Predictor Corrector method.

SECTION-B

- 2. Evaluate $\sqrt{28}$ to four decimal places by Newton's iterative method.
- 3. From the following table, estimate the number of students who obtained marks between 40 and 45.

Marks	30-40	40-50	50-60	60-70	70-80
No. of students	31	42	51	35	31

4. Evaluate :
$$\int_{0}^{6} \frac{dx}{1+x^2}$$
 by using

- (i) Trapezodial rule,
- (ii) Simpson's $\frac{1}{3}$ rd rule, (iii) Simpson's $\frac{3}{8}$ th tule.
- 5. Given that

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
У	7.989	8.403	8.781	9.129	9.451	9.750	10.031

find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at $x = 1.1$, $x = 1.6$

6. Apply Runga-Kutta fourth order method & find an approximate value of

y when
$$x = 0.2$$
. Given by $\frac{dy}{dx} = x + y$ and $y = 1$ when $x = 0$.

7. Write down the working rule of Predictor-Corrector Method.